Inhaltsverzeichnis

Геil	I E	inführur	ng in die Immunologie und die angeborene Immunität	
1	Grui	ndbegrif	fe der Immunologie	3
	1.1	Der Urs	prung der Immunzellen bei den Wirbeltieren	5
	1.2	Grundla	agen der angeborenen Immunität	7
		1.2.1	Kommensale Organismen verursachen beim Wirt nur geringe Schäden, während Krankheitserreger durch verschiedene Mechanismen Gewebe zerstören	7
		1.2.2	Anatomische und chemische Barrieren bilden die erste Abwehrlinie gegen Krankheitserreger	8
		1.2.3	Das Immunsystem wird durch Entzündungsinduktoren aktiviert, die das Auftreten von Krankheitserregern oder Gewebeschäden anzeigen	9
		1.2.4	Die myeloische Zelllinie umfasst die meisten Zellen des angeborenen Immunsystems	9
		1.2.5	Sensorzellen exprimieren Mustererkennungsrezeptoren, die an einer ersten Unterscheidung zwischen körpereigen und nicht körpereigen beteiligt sind	12
		1.2.6	Sensorzellen lösen Entzündungsreaktionen aus, indem sie Mediatoren wie Chemokine und Cytokine freisetzen	14
		1.2.7	Die Lymphocyten der angeborenen Immunität und die natürlichen Killerzellen sind Effektorzellen, die mit lymphatischen Zelllinien des adaptiven Immunsystems übereinstimmende Merkmale besitzen	15
	1.3	Grundla	agen der adaptiven Immunität	16
		1.3.1	Die Wechselwirkung von Antigenen mit ihren Antigenrezeptoren veranlasst die Lymphocyten, Effektor- und Gedächtnisfunktionen auszuführen	17
		1.3.2	Antikörper und T-Zell-Rezeptoren bestehen aus konstanten und variablen Regionen, die jeweils für bestimmte Funktionen zuständig sind	18
		1.3.3	Antikörper und T-Zell-Rezeptoren erkennen Antigene auf grundlegend unterschiedliche Weise	18
		1.3.4	Die Gene der Antigenrezeptoren werden durch somatische Genumlagerungen von unvollständigen Gensegmenten neu zusammengesetzt	19

2

	1.3.5	Lymphocyten werden durch Antigene aktiviert, wobei Klone antigenspezifischer Zellen entstehen, die für die adaptive Immunität verantwortlich sind
	1.3.6	Lymphocyten mit autoreaktiven Rezeptoren werden normalerweise während der Entwicklung beseitigt oder in ihrer Funktion inaktiviert
	1.3.7	Lymphocyten reifen im Knochenmark oder im Thymus und sammeln sich dann überall im Körper in den Lymphgeweben 21
	1.3.8	Adaptive Immunreaktionen werden in den sekundären lymphatischen Geweben durch Antigene und antigenpräsentierende Zellen ausgelöst
	1.3.9	Lymphocyten treffen in den peripheren lymphatischen Organen auf Antigene und reagieren darauf
	1.3.10	Die Schleimhäute besitzen spezialisierte Immunstrukturen, die Reaktionen auf Kontakte mit Mikroorganismen aus der Umgebung steuern
	1.3.11	Lymphocyten, die durch ein Antigen aktiviert wurden, proliferieren in den peripheren lymphatischen Organen und erzeugen dadurch Effektorzellen und das immunologische Gedächtnis
1.4	Effekto	rmechanismen der Immunität
	1.4.1	Den angeborenen Immunreaktionen stehen zur Abwehr der verschiedenen Typen von Krankheitserregern mehrere Effektormodule zur Auswahl
	1.4.2	Antikörper richten sich gegen extrazelluläre Krankheitserreger und ihre toxischen Produkte
	1.4.3	T-Zellen steuern die zellvermittelte Immunität und regulieren die B-Zell-Reaktionen auf die meisten Antigene
	1.4.4	Angeborene und erworbene Defekte des Immunsystems führen zu einer erhöhten Anfälligkeit für Infektionen 38
	1.4.5	Kenntnisse über die adaptive Immunantwort sind wichtig für die Bekämpfung von Allergien, Autoimmunkrankheiten und der Abstoßung von transplantierten Organen
	1.4.6	Impfung ist die wirksamste Methode, Infektionskrankheiten unter Kontrolle zu bringen
Auf	gaben .	
Lite	ratur .	
Die	angebor	rene Immunität
2.1	Anaton	nische Barrieren und erste chemische Abwehrmechanismen 49
	2.1.1	Infektionskrankheiten werden durch verschiedene Organismen verursacht, die sich in ihrem Wirt vermehren 49
	2.1.2	Die Epitheloberflächen des Körpers bilden die erste Barriere gegen Infektionen

	2.1.3	Um einen Infektionsherd im Körper bilden zu können, müssen Erreger die angeborenen Abwehrmechanismen des Wirtes überwinden	55
	2.1.4	Epithelzellen und Phagocyten produzieren verschiedene Arten von antimikrobiellen Proteinen	57
2.2	Das Ko	mplementsystem und die angeborene Immunität	60
	2.2.1	Das Komplementsystem erkennt Merkmale von mikrobiellen Oberflächen und markiert diese durch Einhüllen in C3b für die Zerstörung	62
	2.2.2	Der Lektinweg basiert auf löslichen Rezeptoren, die Oberflächen von Mikroorganismen erkennen und daraufhin die Komplementkaskade auslösen	65
	2.2.3	Der klassische Komplementweg wird durch Aktivierung des C1-Komplexes ausgelöst und ist zum Lektinweg homolog	68
	2.2.4	Die Aktivierung des Komplementsystems beschränkt sich größtenteils auf die Oberfläche, an der die Initiation erfolgte	70
	2.2.5	Der alternative Komplementweg ist eine Verstärkerschleife für die Bildung von C3b, die in Gegenwart von Krankheitserregern durch Properdin beschleunigt wird	71
	2.2.6	Membran- und Plasmaproteine, die die Bildung und Stabilität der C3-Konvertase regulieren, bestimmen das Ausmaß der Komplementaktivierung unter verschiedenen Bedingungen	72
	2.2.7	Das Komplementsystem hat sich schon früh in der Evolution der vielzelligen Organismen entwickelt	74
	2.2.8	Die oberflächengebundene C3-Konvertase lagert große Mengen von C3b-Fragmenten an der Oberfläche von Krankheitserregern ab und erzeugt die C5-Konvertase	75
	2.2.9	Rezeptoren für gebundene Komplementproteine vermitteln die Aufnahme von komplementmarkierten Krankheitserregern durch die Phagocyten	75
	2.2.10	Die kleinen Peptidfragmente einiger Komplementproteine können eine lokale Entzündungsreaktion auslösen	78
	2.2.11	Die terminalen Komplementproteine polymerisieren und bilden Poren in Membranen, die bestimmte Pathogene töten können	78
	2.2.12	Komplementregulatorische Proteine steuern alle drei Reaktionswege der Komplementaktivierung und schützen den Körper vor deren zerstörerischen Effekten	81
	2.2.13	Krankheitserreger produzieren verschiedene Arten von Proteinen, die die Komplementaktivierung blockieren können	85
Auf	gaben .		88
Lite	ratur .		89

		3.2.3	Chemokine, die von Makrophagen und dendritischen Zellen freigesetzt werden, locken Zellen zu Infektionsherden	136
		3.2.4	Zelladhäsionsmoleküle steuern bei einer Entzündungsreaktion die Wechselwirkung zwischen Leukocyten und Endothelzellen	139
		3.2.5	Neutrophile Zellen sind die ersten Zellen, welche die Blutgefäßwand durchqueren und in Entzündungszonen eindringen	142
		3.2.6	TNF-α ist ein wichtiges Cytokin, das die lokale Eindämmung von Infektionen aktiviert, aber bei systemischer Freisetzung einen Schock verursacht	145
		3.2.7	Von Phagocyten freigesetzte Cytokine aktivieren die Akute-Phase-Reaktion	147
		3.2.8	Durch eine Virusinfektion induzierte Interferone tragen auf verschiedene Weise zur Immunabwehr bei	149
		3.2.9	Verschiedene Arten von angeborenen lymphatischen Zellen besitzen in der frühen Infektionsphase eine Schutzfunktion .	153
		3.2.10	NK-Zellen werden durch Typ-I-Interferone und durch Cytokine von Makrophagen aktiviert	154
		3.2.11	NK-Zellen exprimieren aktivierende und inhibitorische Rezeptoren, durch die sie zwischen gesunden und infizierten Zellen unterscheiden können	156
		3.2.12	NK-Zell-Rezeptoren gehören zu verschiedenen Strukturfamilien: KIR, KLR und NCR	158
		3.2.13	NK-Zellen exprimieren aktivierende Rezeptoren, die Liganden erkennen, welche von infizierten Zellen oder Tumorzellen präsentiert werden	160
	Δuf	naben		162
				164
Teil	II D	ie Erken	nung von Antigenen	
4	Anti	generke	nnung durch B-Zell- und T-Zell-Rezeptoren	177
	4.1	Die Stru	uktur eines typischen Antikörpermoleküls	179
		4.1.1	IgG-Antikörper bestehen aus vier Polypeptidketten	179
		4.1.2	Die schweren und leichten Ketten der Immunglobuline setzen sich aus konstanten und variablen Regionen zusammen	181
		4.1.3	Alle Domänen eines Immunglobulinmoleküls besitzen eine ähnliche Struktur	182
		4.1.4	Das Antikörpermolekül lässt sich leicht in funktionell unterschiedliche Fragmente spalten	183
		4.1.5	Durch die Gelenkregion ist das Immunglobulinmolekül für die Bindung vieler Antigene ausreichend beweglich	185

4.2	Die Wechselwirkung des Antikörpermoleküls mit einem spezifischen Antigen				
	4.2.1	Bestimmte Bereiche mit hypervariabler Sequenz bilden die Antigenbindungsstelle	186		
	4.2.2	Antikörper binden Antigene durch Kontakte mit Aminosäuren in den CDRs, die zur Größe und Form des Antigens komplementär sind	187		
	4.2.3	Antikörper binden mithilfe nichtkovalenter Kräfte an strukturell passende Bereiche auf den Oberflächen von Antigenen	190		
	4.2.4	Die Wechselwirkung zwischen einem Antikörper und dem vollständigen Antigen wird durch sterische Blockaden beeinflusst	191		
	4.2.5	Einige Spezies erzeugen Antikörper mit alternativen Strukturen	192		
4.3	Die Ant	tigenerkennung durch T-Zellen	194		
	4.3.1	Das TCR-α:β-Heterodimer ähnelt dem Fab-Fragment eines Immunglobulins	194		
	4.3.2	T-Zell-Rezeptoren erkennen ein Antigen in Form eines Komplexes aus einem fremden Peptid und einem daran gebundenen MHC-Molekül	196		
	4.3.3	Es gibt zwei Klassen von MHC-Molekülen mit unterschiedlichem Aufbau der Untereinheiten, aber ähnlichen dreidimensionalen Strukturen	197		
	4.3.4	Peptide werden fest an MHC-Moleküle gebunden und dienen auch der Stabilisierung des MHC-Moleküls auf der Zelloberfläche	197		
	4.3.5	MHC-Klasse-I-Moleküle binden die beiden Enden von kurzen, acht bis zehn Aminosäuren langen Peptiden	200		
	4.3.6	Die Länge der Peptide, die von MHC-Klasse-II-Molekülen gebunden werden, ist nicht beschränkt	202		
	4.3.7	Die Kristallstrukturen mehrerer Peptid:MHC:T-Zell-Rezeptor-Komplexe zeigen eine ähnliche Orientierung des T-Zell-Rezeptors in Bezug auf den Peptid:MHC-Komplex	204		
	4.3.8	Für eine effektive Immunantwort auf Antigene sind die T-Zell-Oberflächenproteine CD4 und CD8 notwendig, die mit MHC-Molekülen in direkten Kontakt treten	206		
	4.3.9	Die beiden Klassen von MHC-Molekülen werden auf Zellen unterschiedlich exprimiert	210		
	4.3.10	Eine bestimmte Untergruppe von T-Zellen trägt einen alternativen Rezeptor aus einer γ - und einer δ -Kette	210		
Auf	gaben .		213		
Lite	ratur .		214		

5	Die	Entstehu	ing von Antigenrezeptoren in Lymphocyten	221
	5.1	Primäre	Umlagerung von Immunglobulingenen	223
		5.1.1	In den Vorläufern der antikörperproduzierenden Zellen werden Immunglobulingene neu geordnet	223
		5.1.2	Durch die somatische Rekombination separater Gensegmente entstehen die vollständigen Gene für eine variable Region	224
		5.1.3	Jeder Immunglobulinlocus besteht aus vielen hintereinanderliegenden V-Gen-Segmenten	226
		5.1.4	Die Umlagerung der V-, D- und J-Gen-Segmente wird durch flankierende DNA-Sequenzen gesteuert	227
		5.1.5	An der Reaktion, die V-, D- und J-Gen-Segmente rekombiniert, sind sowohl lymphocytenspezifische als auch ubiquitäre DNA-modifizierende Enzyme beteiligt	230
		5.1.6	Für die Erzeugung der Immunglobulinvielfalt gibt es vier grundlegende Mechanismen	234
		5.1.7	Die mehrfachen ererbten Gensegmente werden in verschiedenen Kombinationen verwendet	234
		5.1.8	Unterschiede beim Einfügen und Entfernen von Nucleotiden an den Verbindungsstellen zwischen den Gensegmenten tragen zur Vielfalt in der dritten hypervariablen Region bei	235
	5.2	Die Um	lagerung der Gene von T-Zell-Rezeptoren	237
		5.2.1	Die Loci von T-Zell-Rezeptoren sind ähnlich angeordnet wie die Loci der Immunglobuline und werden mithilfe derselben Enzyme umgelagert	238
		5.2.2	Bei den T-Zell-Rezeptoren ergibt sich die Vielfalt durch die dritte hypervariable Region	241
		5.2.3	γ : δ -T-Zell-Rezeptoren entstehen ebenfalls durch Genumlagerung	241
	5.3	Struktu	rvarianten der konstanten Immunglobulinregionen	243
		5.3.1	Die Isotypen der Immunglobuline unterscheiden sich in der Struktur der konstanten Regionen ihrer schweren Ketten	243
		5.3.2	Die konstanten Regionen der Antikörper sind für die funktionelle Spezialisierung verantwortlich	245
		5.3.3	IgM und IgD stammen von demselben Prä-mRNA-Transkript ab und werden auf der Oberfläche von reifen B-Zellen exprimiert	246
		5.3.4	Die membrandurchspannende und die sezernierte Form der Immunglobuline stammen von verschiedenen Transkripten für die schwere Kette	246
		5.3.5	IgM und IgA können Polymere bilden, indem sie mit der J-Kette interagieren	249
	5.4	Die Evo	lution der adaptiven Immunantwort	251
		5.4.1	Einige Wirbellose produzieren ein ausgesprochen vielfältiges Repertoire an Immunglobulingenen	251

6.2.1

Gene im MHC codieren viele Proteine, die an der

Prozessierung und Präsentation von Antigenen beteiligt

294

6.2.4 Alloreaktive T-Zellen, die Nichtselbst-MHC-Moleküle erkennen, sind sehr verbreitet			6.2.2	sind hoch polymorph	297
sind sehr verbreitet 30. 6.2.5 Viele T-Zellen reagieren auf Superantigene 30. 6.2.6 Der MHC-Polymorphismus erweitert das Spektrum von Antigenen, auf die das Immunsystem reagieren kann 30. 6.3 Die Erzeugung von Liganden für nichtkonventionelle Untergruppen der T-Zellen 30. 6.3.1 Eine Reihe von Genen mit speziellen Immunfunktionen liegt ebenfalls im MHC 30. 6.3.2 Spezialisierte MHC-Klasse-I-Moleküle agieren als Liganden zur Aktivierung und Hemmung von NK-Zellen und bestimmten nichtkonventionellen T-Zellen 31. 6.3.3 Proteine der CD1-Familie der MHC-Klasse-I-ähnlichen Moleküle präsentieren den invarianten NKT-Zellen mikrobielle Lipide 31. 6.3.4 Das nichtklassische MHC-Klasse-I-Molekül MR1 präsentiert den MAIT-Zellen Stoffwechselprodukte der Folsäure 31. 6.3.5 y.\(\frac{3}{2}\)-T-Zellen k\(\tilde{0}\)nonen eine Reihe verschiedener Liganden erkennen 31. Aufgaben 31. Aufgaben 31. Teil III Die Entstehung des Rezeptorrepertoires von reifen Lymphocyten 31. 7.1.1 Transmembranrezeptoren wandeln extrazelluläre Signale in intrazelluläre biochemische Ereignisse um 33. 7.1.1 Transmembranrezeptoren wandeln extrazelluläre Signale in intrazelluläre Signalübertragung erfolgt h\(\text{a}\)dig \(\text{uber große Signalkomplexe aus vielen Proteinen 33. 7.1.2 Die intrazelluläre Signalübertragung erfolgt h\(\text{a}\)dig \(\text{uber große Signalkomplexe aus vielen Proteinen 33. 7.1.3 In vielen Signalwegen fungieren kleine G-Proteine als molekulare Schalter 33. 7.1.4 Signalproteine werden durch eine Reihe verschiedener Mechanismen zur Membran gelenkt 33. 7.1.5 Posttranslationale Modifikationen k\(\tilde{0}\)nonen Signalreaktionen aktivieren oder blockieren 33.			6.2.3	durch T-Zellen über die Regulation der Peptidbindung und der	299
6.2.6 Der MHC-Polymorphismus erweitert das Spektrum von Antigenen, auf die das Immunsystem reagieren kann 300 der Tzellen 301 der Tzellen 301 der Tzellen 302 der Tzellen 302 der Tzellen 303 der Tzellen 303 der Tzellen 304 der Tzellen 305 der Tzellen 306 der Tzellen 306 der Tzellen 307 der Tzellen			6.2.4		
von Antigenen, auf die das Immunsystem reagieren kann 300 6.3 Die Erzeugung von Liganden für nichtkonventionelle Untergruppen der T-Zellen 300 6.3.1 Eine Reihe von Genen mit speziellen Immunfunktionen liegt ebenfalls im MHC 300 6.3.2 Spezialisierte MHC-Klasse-I-Moleküle agieren als Liganden zur Aktivierung und Hemmung von NK-Zellen und bestimmten nichtkonventionellen T-Zellen 310 6.3.3 Proteine der CD1-Familie der MHC-Klasse-I-ähnlichen Moleküle präsentieren den invarianten NKT-Zellen mikrobielle Lipide 311 6.3.4 Das nichtklassische MHC-Klasse-I-Molekül MR1 präsentiert den MAIT-Zellen Stoffwechselprodukte der Folsäure 312 6.3.5 y.ô-T-Zellen können eine Reihe verschiedener Liganden erkennen 313 Aufgaben 314 Teil III Die Entstehung des Rezeptorrepertoires von reifen Lymphocyten 315 7.1.1 Transmembranrezeptoren wandeln extrazelluläre Signale in intrazelluläre biochemische Ereignisse um 332 7.1.1 Transmembranrezeptoren wandeln extrazelluläre Signale in intrazelluläre Signalübertragung erfolgt häufig über große Signalkomplexe aus vielen Proteinen 333 7.1.2 Die intrazelluläre Signalübertragung erfolgt häufig über große Signalwomplexe aus vielen Proteinen 333 7.1.4 Signalproteine werden durch eine Reihe verschiedener Mechanismen zur Membran gelenkt 334 7.1.5 Posttranslationale Modifikationen können Signalreaktionen aktivieren oder blockieren 333 7.1.6 Die Aktivierung bestimmter Rezeptoren führt zur Produktion			6.2.5	Viele T-Zellen reagieren auf Superantigene	304
der T-Zellen			6.2.6		306
ebenfalls im MHC 30. 6.3.2 Spezialisierte MHC-Klasse-I-Moleküle agieren als Liganden zur Aktivierung und Hemmung von NK-Zellen und bestimmten nichtkonventionellen T-Zellen 31. 6.3.3 Proteine der CD1-Familie der MHC-Klasse-I-ähnlichen Moleküle präsentieren den invarianten NKT-Zellen mikrobielle Lipide 31. 6.3.4 Das nichtklassische MHC-Klasse-I-Molekül MR1 präsentiert den MAIT-Zellen stoffwechselprodukte der Folsäure 31. 6.3.5 y:\delta-T-Zellen können eine Reihe verschiedener Liganden erkennen 31. Aufgaben 31. Literatur 31. Teil III Die Entstehung des Rezeptorrepertoires von reifen Lymphocyten 31. Teil III Die Entstehung des Rezeptorrepertoires von reifen Lymphocyten 32. 7.1 Allgemeine Prinzipien der Signalübertragung und -weiterleitung 33. 7.1.1 Transmembranrezeptoren wandeln extrazelluläre Signale in intrazelluläre biochemische Ereignisse um 33. 7.1.2 Die intrazelluläre Signalübertragung erfolgt häufig über große Signalkomplexe aus vielen Proteinen 33. 7.1.3 In vielen Signalwegen fungieren kleine G-Proteine als molekulare Schalter 33. 7.1.4 Signalproteine werden durch eine Reihe verschiedener Mechanismen zur Membran gelenkt 33. 7.1.5 Posttranslationale Modifikationen können Signalreaktionen aktivieren oder blockieren 33.		6.3			307
Aktivierung und Hemmung von NK-Zellen und bestimmten nichtkonventionellen T-Zellen			6.3.1	•	308
Moleküle präsentieren den invarianten NKT-Zellen mikrobielle Lipide			6.3.2	Aktivierung und Hemmung von NK-Zellen und bestimmten	310
MAIT-Zellen Stoffwechselprodukte der Folsäure 31: 6.3.5 y: \(\delta\)-T-Zellen k\(\delta\) nnen eine Reihe verschiedener Liganden erkennen 31: Aufgaben 31: Literatur 31: Teil III Die Entstehung des Rezeptorrepertoires von reifen Lymphocyten 31: 7 Signalgebung durch Rezeptoren des Immunsystems 32: 7.1 Allgemeine Prinzipien der Signal\(\delta\) bertragung und -weiterleitung 33: 7.1.1 Transmembranrezeptoren wandeln extrazellul\(\delta\) re Signale in intrazellul\(\delta\) re biochemische Ereignisse um 33: 7.1.2 Die intrazellul\(\delta\) re Signal\(\delta\) ber gro\(\delta\) signal\(\delta\) bertragung erfolgt h\(\delta\) dig \(\delta\) ber gro\(\delta\) Signalwegen fungieren kleine G-Proteine als molekulare Schalter 33: 7.1.4 Signalproteine werden durch eine Reihe verschiedener Mechanismen zur Membran gelenkt 33: 7.1.5 Posttranslationale Modifikationen k\(\delta\) nnen Signalreaktionen aktivieren oder blockieren 33: 7.1.6 Die Aktivierung bestimmter Rezeptoren f\(\delta\) htt zur Produktion			6.3.3	Moleküle präsentieren den invarianten NKT-Zellen mikrobielle	311
erkennen			6.3.4	·	313
Literatur			6.3.5	•	313
Teil III Die Entstehung des Rezeptorrepertoires von reifen Lymphocyten 7 Signalgebung durch Rezeptoren des Immunsystems		Auf	gaben .		316
7.1 Allgemeine Prinzipien der Signalübertragung und -weiterleitung 330 7.1.1 Transmembranrezeptoren wandeln extrazelluläre Signale in intrazelluläre biochemische Ereignisse um 330 7.1.2 Die intrazelluläre Signalübertragung erfolgt häufig über große Signalkomplexe aus vielen Proteinen 330 7.1.3 In vielen Signalwegen fungieren kleine G-Proteine als molekulare Schalter 330 7.1.4 Signalproteine werden durch eine Reihe verschiedener Mechanismen zur Membran gelenkt 330 7.1.5 Posttranslationale Modifikationen können Signalreaktionen aktivieren oder blockieren 330 7.1.6 Die Aktivierung bestimmter Rezeptoren führt zur Produktion		Lite	ratur .		318
7.1 Allgemeine Prinzipien der Signalübertragung und -weiterleitung	Teil	III D	ie Entste	ehung des Rezeptorrepertoires von reifen Lymphocyten	
7.1.1 Transmembranrezeptoren wandeln extrazelluläre Signale in intrazelluläre biochemische Ereignisse um	7	Sign	algebun	g durch Rezeptoren des Immunsystems	329
in intrazelluläre biochemische Ereignisse um		7.1	Allgem	eine Prinzipien der Signalübertragung und -weiterleitung	330
über große Signalkomplexe aus vielen Proteinen			7.1.1		330
als molekulare Schalter			7.1.2		333
Mechanismen zur Membran gelenkt			7.1.3		335
aktivieren oder blockieren			7.1.4		336
			7.1.5		337
			7.1.6		338

7.2	Signale Lympho	der Antigenrezeptoren und die Aktivierung von ocyten						
	7.2.1	Antigenrezeptoren bestehen aus variablen antigenbindenden Ketten, die mit invarianten akzessorischen Ketten verknüpft sind, die die Signalfunktion des Rezeptors übernehmen	340					
	7.2.2	Die Antigenerkennung durch den T-Zell-Rezeptor und seine Corezeptoren führt zu einem Signal durch die Plasmamembran, das weitere Signale auslöst	342					
	7.2.3	Die Antigenerkennung durch den T-Zell-Rezeptor und seine Corezeptoren führt zur Phosphorylierung von ITAM-Sequenzen durch Kinasen der Src-Familie und erzeugt so das erste intrazelluläre Signal einer Signalkaskade	343					
	7.2.4	Phosphorylierte ITAM-Sequenzen rekrutieren und aktivieren die Tyrosinkinase ZAP-70	345					
	7.2.5	ITAM-Sequenzen kommen auch in anderen Rezeptoren auf Leukocyten vor, die Signale zur Zellaktivierung aussenden	345					
	7.2.6	Die aktivierte Kinase ZAP-70 phosphoryliert Gerüstproteine und stimuliert die Aktivierung der PI-3-Kinase	346					
	7.2.7	Die aktivierte PLC-γ erzeugt die Second Messenger Diacylglycerin und Inositoltrisphosphat, was zur Aktivierung von Transkriptionsfaktoren führt	346					
	7.2.8	Ca ²⁺ aktiviert den Transkriptionsfaktor NFAT	349					
	7.2.9	Die Aktivierung von Ras stimuliert die mitogenaktivierte Proteinkinase (MAPK), die als Schaltstelle fungiert, und induziert die Expression des Transkriptionsfaktors AP-1	351					
	7.2.10	Proteinkinase C aktiviert die Transkriptionsfaktoren NF κ B und AP-1	352					
	7.2.11	Die Aktivierung der PI-3-Kinase bewirkt über die Serin/ Threonin-Kinase Akt eine Hochregulation der zellulären Stoffwechselwege	354					
	7.2.12	Signale von T-Zell-Rezeptoren führen zu einer stärkeren, durch Integrine vermittelte Zelladhäsion	355					
	7.2.13	T-Zell-Rezeptor-Signale induzieren die Umstrukturierung des Cytoskeletts durch Aktivierung der kleinen GTPase Cdc42	356					
	7.2.14	Die Signalgebung durch den B-Zell-Rezeptor ähnelt im Prinzip der Signalgebung durch den T-Zell-Rezeptor, aber einige Komponenten sind nur für B-Zellen spezifisch	357					
7.3		llierende und inhibitorische Rezeptoren beeinflussen die ebung der Antigenrezeptoren bei T- und B-Lymphocyten	360					
	7.3.1	Das Oberflächenprotein CD28 ist ein notwendiger costimulierender Rezeptor für die Aktivierung naiver T-Zellen	360					
	7.3.2	Die maximale Aktivierung der PLC-γ, die für die Aktivierung von Transkriptionsfaktoren wichtig ist, erfordert costimulierende Signale, die von CD28 induziert werden.	362					

		7.3.3	Proteine der TNF-Rezeptor-Superfamilie verstärken die Aktivierung der B- und T-Zellen	362
		7.3.4	Inhibitorische Rezeptoren auf den Lymphocyten schwächen Immunantworten ab, indem sie die costimulierenden Signalwege stören	365
		7.3.5	Inhibitorische Rezeptoren auf den Lymphocyten schwächen Immunantworten ab, indem sie Proteinund Lipidphosphatasen mobilisieren	366
	Aufo	gaben .		369
				371
8			ung der nphocyten	377
	8.1		klung der B-Lymphocyten	379
	0.1	8.1.1	Lymphocyten stammen von hämatopoetischen Stammzellen	3/9
		0.1.1	im Knochenmark ab	379
		8.1.2	Die Entwicklung der B-Zellen beginnt mit der Umlagerung des Locus für die schwere Kette	383
		8.1.3	Der Prä-B-Zell-Rezeptor prüft, ob eine vollständige schwere Kette produziert wurde, und gibt das Signal für den Übergang von der Pro-B-Zelle zum Stadium der Prä-B-Zelle	387
		8.1.4	Signale des Prä-B-Zell-Rezeptors blockieren weitere Umlagerungen des Locus für die schwere Kette und erzwingen einen Allelausschluss	388
		8.1.5	In Prä-B-Zellen wird der Locus der leichten Kette umgelagert und ein Zelloberflächenimmunglobulin exprimiert	389
		8.1.6	Unreife B-Zellen werden auf Autoreaktivität geprüft, bevor sie das Knochenmark verlassen	390
		8.1.7	Lymphocyten, die in der Peripherie zum ersten Mal mit einer ausreichenden Menge an Autoantigenen in Kontakt kommen, werden vernichtet oder inaktiviert	395
		8.1.8	Unreife B-Zellen, die in der Milz ankommen, werden rasch umgesetzt und benötigen Cytokine und positive Signale über den B-Zell-Rezeptor, um heranreifen und langfristig überleben zu können	396
		8.1.9	B1-Zellen sind eine Untergruppe der angeborenen Lymphocyten, die in einer frühen Entwicklungsphase entstehen	399
	8.2	Entwick	klung der T-Zellen	401
		8.2.1	Vorläufer der T-Zellen entstehen im Knochenmark, aber alle wichtigen Vorgänge ihrer Entwicklung finden im Thymus statt	403
		8.2.2	Die Vorprägung für die T-Zell-Linie findet im Anschluss an Notch-Signale im Thymus statt	405
		8.2.3	Im Thymus proliferieren T-Zell-Vorläufer besonders stark, aber die meisten sterben ab	406

XXIV Inhaltsverzeichnis

	8.2.4	Die aufeinanderfolgenden Stadien der Thymocytenentwicklung sind durch Änderungen in den Zelloberflächenmolekülen gekennzeichnet	407
	8.2.5	In unterschiedlichen Bereichen des Thymus findet man Thymocyten verschiedener Entwicklungsstadien	410
	8.2.6	T-Zellen mit $\alpha:\beta$ - oder $\gamma:\delta$ -Rezeptoren haben einen gemeinsamen Vorläufer	411
	8.2.7	T-Zellen, die γ : δ -T-Zell-Rezeptoren exprimieren, entstehen in zwei verschiedenen Entwicklungsphasen	411
	8.2.8	Die erfolgreiche Synthese einer umgelagerten β -Kette ermöglicht die Produktion eines Prä-T-Zell-Rezeptors, der die Zellproliferation auslöst und die weitere Umlagerung des Gens für die β -Kette blockiert	413
	8.2.9	Die Gene für die α -Kette werden so lange immer wieder umgelagert, bis es zu einer positiven Selektion kommt oder der Zelltod eintritt	416
8.3	Positive	und negative Selektion von T-Zellen	417
	8.3.1	Nur Thymocyten, deren Rezeptoren mit Selbst-Peptid:Selbst-MHC-Komplexen interagieren, können überleben und heranreifen	418
	8.3.2	Die positive Selektion wirkt auf ein T-Zell-Rezeptor-Repertoire mit inhärenter Spezifität für MHC-Moleküle	419
	8.3.3	Durch positive Selektion wird die Expression von CD4 und CD8 mit der Spezifität des T-Zell-Rezeptors und den potenziellen Effektorfunktionen der Zelle in Einklang gebracht	420
	8.3.4	Die corticalen Thymusepithelzellen bewirken eine positive Selektion sich entwickelnder Thymocyten	421
	8.3.5	T-Zellen, die stark auf ubiquitäre Autoantigene reagieren, werden im Thymus eliminiert	423
	8.3.6	Die negative Selektion erfolgt sehr effizient durch antigenpräsentierende Zellen aus dem Knochenmark	425
	8.3.7	Die Spezifität und/oder die Stärke der Signale für die negative und die positive Selektion müssen sich unterscheiden	425
	8.3.8	Regulatorische T-Zellen, die Selbst-Peptide erkennen, und die angeborenen T-Zellen entwickeln sich im Thymus	426
	8.3.9	Die letzte Phase der T-Zell-Reifung erfolgt im Thymusmark	427
	8.3.10	T-Zellen, die zum ersten Mal in der Peripherie mit einer ausreichenden Menge an Autoantigenen in Kontakt kommen, werden vernichtet oder inaktiviert	427
Auf	gaben .		430
Lite	ratur .		433

Teil IV Die adaptive Immunantwort

9	Die	T-Zell-ve	ermittelte Immunität	443
	9.1		klung und Funktion der sekundären lymphatischen Organe, in die adaptiven Immunantworten ausgelöst werden	445
		9.1.1	T- und B-Lymphocyten kommen in den sekundären lymphatischen Geweben an unterschiedlichen Stellen vor	446
		9.1.2	Die Entwicklung der sekundären lymphatischen Gewebe wird von Lymphgewebeinduktorzellen und Proteinen aus der Familie der Tumornekrosefaktoren kontrolliert	448
		9.1.3	T- und B-Zellen werden in den sekundären lymphatischen Geweben durch die Aktivität von Chemokinen in getrennte Regionen gelenkt	450
		9.1.4	Naive T-Zellen wandern durch die sekundären lymphatischen Gewebe und überprüfen die Peptid:MHC-Komplexe auf der Oberfläche antigenpräsentierender Zellen	451
		9.1.5	Lymphocyten können nur mithilfe von Chemokinen und Adhäsionsmolekülen in die Lymphgewebe gelangen	453
		9.1.6	Aufgrund der Aktivierung von Integrinen durch Chemokine können naive T-Zellen in die Lymphknoten gelangen	455
		9.1.7	Der Austritt der T-Zellen aus den Lymphknoten wird von einem chemotaktischen Lipid kontrolliert	457
		9.1.8	T-Zell-Antworten werden in den sekundären lymphatischen Organen von aktivierten dendritischen Zellen ausgelöst	459
		9.1.9	Dendritische Zellen prozessieren Antigene aus einem breiten Spektrum von Krankheitserregern	461
		9.1.10	Durch Mikroorganismen ausgelöste TLR-Signale führen bei geweberesidenten dendritischen Zellen dazu, dass sie in die lymphatischen Organe wandern und die Prozessierung von Antigenen zunimmt	463
		9.1.11	Plasmacytoide dendritische Zellen produzieren große Mengen an Typ-I-Interferonen und fungieren wahrscheinlich als Helferzellen für die Antigenpräsentation durch konventionelle dendritische Zellen	467
		9.1.12	Makrophagen sind Fresszellen und werden von Pathogenen dazu veranlasst, naiven T-Zellen Fremdantigene zu präsentieren	467
		9.1.13	B-Zellen präsentieren Antigene sehr effektiv, die an ihre Oberflächenimmunglobuline binden	468
	9.2		ming von naiven T-Zellen durch dendritische Zellen, die von eitserregern aktiviert wurden	471
		9.2.1	Adhäsionsmoleküle sorgen für die erste Wechselwirkung von naiven T-Zellen mit antigenpräsentierenden Zellen	472
		9.2.2	Antigenpräsentierende Zellen liefern vielfache Signale für die klonale Expansion und Differenzierung von naiven T-Zellen	473

	9.2.3	Die CD28-abhängige Costimulation von aktivierten T-Zellen induziert die Expression von Interleukin-2 und des hochaffinen IL-2-Rezeptors	
	9.2.4	Bei der T-Zell-Aktivierung spielen costimulierende Signalwege eine Rolle	475
	9.2.5	Proliferierende T-Zellen differenzieren sich zu T-Effektorzellen, die ohne Costimulation auskommen	
	9.2.6	CD8-T-Zellen können auf unterschiedliche Weise dazu gebracht werden, sich in cytotoxische Effektorzellen zu verwandeln	477
	9.2.7	CD4-T-Zellen differenzieren sich zu verschiedenen Subpopulationen mit funktionell unterschiedlichen Effektorzellen	479
	9.2.8	Cytokine lösen die Differenzierung naiver T-Zellen in Form bestimmter Effektorwege aus	481
	9.2.9	Subpopulationen der CD4-T-Zellen können die jeweilige Differenzierung durch die von ihnen produzierten Cytokine über Kreuz regulieren	485
	9.2.10	Regulatorische CD4-T-Zellen wirken bei der Kontrolle der adaptiven Immunantworten mit	487
9.3	Allgeme	eine Eigenschaften von T-Effektorzellen und ihren Cytokinen	489
	9.3.1	Antigenunspezifische Zelladhäsionsmoleküle führen zu Wechselwirkungen zwischen T-Effektorzellen und Zielzellen	489
	9.3.2	Zwischen T-Effektorzellen und ihren Zielzellen bilden sich immunologische Synapsen, wodurch die Signalgebung reguliert wird und die Freisetzung von Effektormolekülen gezielt erfolgt	491
	9.3.3	Die Effektorfunktionen von T-Zellen hängen davon ab, welches Spektrum an Effektormolekülen sie hervorbringen	
	9.3.4	Cytokine können lokal, aber auch in größerer Entfernung wirken	494
	9.3.5	T-Zellen exprimieren verschiedene Cytokine der TNF-Familie als trimere Proteine, die normalerweise mit der Zelloberfläche assoziiert sind	494
9.4	Die T-Ze	ell-vermittelte Cytotoxizität	496
	9.4.1	Cytotoxische T-Zellen führen bei Zielzellen über extrinsische und intrinsische Signalwege einen programmierten Zelltod herbei	497
	9.4.2	Der intrinsische Apoptoseweg wird durch die Freisetzung von Cytochrom c aus den Mitochondrien eingeleitet	499
	9.4.3	In den Granula cytotoxischer CD8-T-Zellen befinden sich cytotoxische Effektorproteine, die eine Apoptose auslösen	500
	9.4.4	Cytotoxische T-Zellen töten selektiv und nacheinander Zielzellen, die ein spezifisches Antigen exprimieren	502
	9.4.5	Cytotoxische T-Zellen wirken auch, indem sie Cytokine ausschütten	503

	Aufgaben .		504
	Literatur .		507
10	Die humoral	e Immunantwort	517
	10.1 Aktivier	rung von B-Zellen und Produktion von Antikörpern	518
	10.1.1	Für die Aktivierung von B-Zellen durch Antigene sind sowohl Signale des B-Zell-Rezeptors als auch Signale von T _{FH} -Zellen oder mikrobiellen Antigenen erforderlich	519
	10.1.2	Die gekoppelte Antigenerkennung durch T- und B-Zellen fördert starke Antikörperreaktionen	521
	10.1.3	B-Zellen, die Kontakt mit ihrem Antigen hatten, wandern in den sekundären lymphatischen Geweben an Grenzen zwischen B- und T-Zell-Zonen	522
	10.1.4	T-Zellen exprimieren Oberflächenmoleküle und Cytokine, die B-Zellen aktivieren, die wiederum die Entwicklung der T _{FH} -Zellen fördern	525
	10.1.5	Aktivierte B-Zellen differenzieren sich zu antikörperfreisetzenden Plasmablasten und Plasmazellen	527
	10.1.6	Die zweite Phase der primären B-Zell-Immunantwort beginnt damit, dass aktivierte B-Zellen zu den Follikeln wandern, dort proliferieren und Keimzentren bilden	529
	10.1.7	Die B-Zellen des Keimzentrums durchlaufen eine somatische Hypermutation der V-Region und Zellen werden selektiert, bei denen Mutationen die Affinität für ein Antigen verbessert haben	532
	10.1.8	Bei der positiven Selektion von B-Zellen in den Keimzentren kommt es zu Kontakten mit T _{FH} -Zellen und zu CD40-Signalen	535
	10.1.9	Die aktivierungsinduzierte Cytidin-Desaminase (AID) führt in Gene, die von B-Zellen transkribiert werden, Mutationen ein	537
	10.1.10	Reaktionswege der Fehlpaarungs- und Basenreparatur tragen nach der initialen AID-Aktivität zur somatischen Hypermutation bei	537
	10.1.11	Die AID löst den Isotypwechsel aus, bei dem im Verlauf der Immunantwort das gleiche zusammengesetzte V _H -Exon mit verschiedenen C _H -Genen verknüpft wird	540
	10.1.12	Bei T-abhängigen Antikörperreaktionen steuern von T _{FH} -Zellen produzierte Cytokine die Auswahl des Isotyps beim Klassenwechsel	543
	10.1.13	B-Zellen, die die Keimzentrumsreaktion überleben, differenzieren sich schließlich entweder zu Plasmazellen oder zu Gedächtniszellen	544
	10.1.14	Bei einigen Antigenen ist keine Unterstützung durch T-Zellen notwendig, um B-Zell-Reaktionen auszulösen	545

	10.2 Verteilu	ung und Funktionen der Immunglobulinisotypen	549
	10.2.1	Antikörper mit verschiedenen Isotypen wirken an unterschiedlichen Stellen und haben verschiedene Effektorfunktionen	549
	10.2.2	Polymere Immunglobulinrezeptoren binden an die Fc-Domäne von IgA und IgM und schleusen sie durch Epithelien	551
	10.2.3	Der neonatale Fc-Rezeptor transportiert IgG durch die Plazenta und verhindert die Ausscheidung von IgG aus dem Körper	553
	10.2.4	Hochaffine IgG- und IgA-Antikörper können Toxine neutralisieren und die Infektiosität von Viren und Bakterien blockieren	554
	10.2.5	Antigen: Antikörper-Komplexe lösen durch Bindung an C1q den klassischen Weg der Komplementaktivierung aus	557
	10.2.6	Komplementrezeptoren und Fc-Rezeptoren tragen jeweils dazu bei, Immunkomplexe aus dem Kreislauf zu entfernen	559
		störung antikörperbeschichteter Krankheitserreger mithilfe Rezeptoren	561
	10.3.1	Die Fc-Rezeptoren akzessorischer Zellen sind spezifische Signalmoleküle für Immunglobuline verschiedener Isotypen	562
	10.3.2	An die Oberfläche von Erregern gebundene Antikörper aktivieren Fc-Rezeptoren von Phagocyten, wodurch diese Pathogene aufnehmen und zerstören können	563
	10.3.3	Fc-Rezeptoren regen NK-Zellen an, mit Antikörpern bedeckte Zielzellen zu zerstören	565
	10.3.4	Mastzellen und Basophile binden über den hochaffinen Fcε-Rezeptor an IgE-Antikörper	566
	10.3.5	Die IgE-vermittelte Aktivierung akzessorischer Zellen spielt eine wichtige Rolle bei der Resistenz gegen	
	Aufaabaa	Parasiteninfektionen	568
			570 573
	Literatur .		3/3
11	Die Dynamik	der angeborenen und adaptiven Immunantwort	581
		nenwirken der angeborenen und adaptiven Immunität als on auf spezifische Arten von Krankheitserregern	582
	11.1.1	Eine Infektion durchläuft unterschiedliche Phasen	584
	11.1.2	Welche Effektormechanismen für die Beseitigung einer Infektion aktiviert werden, hängt vom Krankheitserreger ab	587
		torzellen verstärken die Effektorfunktionen der angeborenen zellen	590
	11.2.1	T-Effektorzellen werden durch Veränderungen ihrer Expression von Adhäsionsmolekülen und Chemokinrezeptoren zu spezifischen Geweben und zu Infektionsherden gelenkt	591

	11.2.2	Pathogenspezifische T-Effektorzellen sammeln sich in Infektionsherden an, während die adaptive Immunität voranschreitet	596
	11.2.3	T _H 1-Zellen koordinieren und verstärken die Reaktionen des Wirtes gegenüber intrazellulären Krankheitserregern durch die klassische Aktivierung von Makrophagen	597
	11.2.4	Die Aktivierung von Makrophagen durch T _H 1-Zellen muss genau reguliert werden, damit eine Schädigung von Geweben vermieden wird	599
	11.2.5	Die chronische Aktivierung von Makrophagen durch $T_{\rm H}$ 1-Zellen führt zur Bildung von Granulomen, die intrazelluläre Pathogene umschließen, die nicht beseitigt werden können	600
	11.2.6	Defekte der Typ-1-Immunität belegen deren große Bedeutung für die Beseitigung von intrazellulären Krankheitserregern	600
	11.2.7	T_H 2-Zellen koordinieren Immunantworten vom Typ 2, durch Helminthen im Darm beseitigt werden	601
	11.2.8	T _H 17-Zellen koordinieren die Immunantworten vom Typ 3 und unterstützen so die Beseitigung extrazellulärer Bakterien und Pilze	604
	11.2.9	Differenzierte T-Effektorzellen reagieren weiterhin auf Signale, während sie ihre Effektorfunktionen ausführen	606
	11.2.10	T-Effektorzellen können unabhängig von der Antigenerkennung aktiviert werden, Cytokine freizusetzen	607
	11.2.11	T-Effektorzellen zeigen Plastizität und Kooperativität, sodass sie sich im Verlauf von Anti-Pathogen-Reaktionen anpassen können	607
	11.2.12	Das Zusammenwirken der zellulären und antikörperabhängigen Immunität ist von entscheidender Bedeutung für den Schutz vor vielen Arten von Pathogenen	609
	11.2.13	Primäre CD8-T-Zell-Reaktionen auf Krankheitserreger können auch ohne die Unterstützung durch CD4-T-Zellen stattfinden	
	11.2.14	Wird eine Infektion beseitigt, sterben die meisten	610 612
11.3	Das imn		614
	11.3.1	Nach einer Infektion oder Impfung bildet sich ein lang anhaltendes immunologisches Gedächtnis aus	
	11.3.2	Die Reaktionen von B-Gedächtniszellen erfolgen schneller und zeigen eine höhere Affinität für Antigene im Vergleich zu den Reaktionen der naiven B-Zellen	616
	11.3.3	B-Gedächtniszellen können während einer Sekundärreaktion wieder in die Keimzentren eintreten und eine weitere somatische Hypermutation und Affinitätsreifung durchlaufen	
			617

	11.3.4	Mithilfe von MHC-Tetrameren lassen sich T-Gedächtniszellen identifizieren, die in größerer Zahl bestehen bleiben als naive T-Zellen	618
	11.3.5	T-Gedächtniszellen gehen aus T-Effektorzellen hervor, deren Reaktivität gegenüber IL-7 oder IL-15 erhalten bleibt	619
	11.3.6	Die T-Gedächtniszellen sind heterogen und umfassen zentrale Gedächtniszellen, Effektorgedächtniszellen und geweberesidente Zellen	621
	11.3.7	CD8-T-Gedächtniszellen benötigen die Unterstützung durch CD4-T-Zellen sowie Signale in Form von CD40 und IL-2	625
	11.3.8	Bei immunen Individuen werden die sekundären und späteren Reaktionen vor allem von den Gedächtnislymphocyten	636
	A C l	hervorgerufen	
	_		
	Literatur .		632
12	Das mucosal	e Immunsystem	641
	12.1 Aufbau	und Funktionsweise des mucosalen Immunsystems	642
	12.1.1	Das mucosale Immunsystem schützt die inneren Oberflächen	
		des Körpers	642
	12.1.2	Die Zellen des mucosalen Immunsystems kommen in anatomisch definierten Kompartimenten, aber auch überall in den mucosalen Geweben verstreut vor	646
	12.1.3	Der Darm besitzt spezielle Wege und Mechanismen für die Aufnahme von Antigenen	649
	12.1.4	Das Immunsystem der Schleimhäute enthält eine große Zahl von Effektorlymphocyten, selbst wenn keine Erkrankung vorliegt	650
	12.1.5	Das Zirkulieren der Lymphocyten innerhalb des mucosalen Immunsystems wird von gewebespezifischen Adhäsionsmolekülen und Chemokinrezeptoren reguliert	651
	12.1.6	Das Priming von Lymphocyten in einem mucosalen Gewebe kann an anderen mucosalen Oberflächen einen Immunschutz herbeiführen	653
	12.1.7	Abgegrenzte Populationen von dendritischen Zellen kontrollieren die mucosalen Immunantworten	654
	12.1.8	Makrophagen und dendritische Zellen besitzen bei mucosalen Immunantworten unterschiedliche Funktionen	656
	12.1.9	Antigenpräsentierende Zellen in der Darmschleimhaut nehmen Antigene auf verschiedenen Wegen auf	657
	12.1.10	Die sezernierten IgA-Antikörper bilden den Isotyp, der mit dem mucosalen Immunsystem verknüpft ist	657
	12.1.11	Zur IgA-Produktion können bei einigen Spezies auch T-unabhängige Prozesse beitragen	661

	12.1.12	Beim Menschen kommt es relativ häufig zu einem IgA-Defekt, der sich jedoch durch sekretorische IgM-Antikörper ausgleichen lässt	661
	12.1.13	Die Lamina propria des Darms enthält T-Zellen mit "Antigenerfahrung" und ungewöhnliche angeborene lymphatische Zellen	662
	12.1.14	Das Darmepithel ist ein einzigartiges Kompartiment des Immunsystems	663
		cosale Reaktion auf eine Infektion und die Regulation der antworten	667
	12.2.1	Enterische Krankheitserreger verursachen eine lokale Entzündungsreaktion und führen zur Entwicklung eines Immunschutzes	667
	12.2.2	Krankheitserreger induzieren adaptive Immunantworten, sobald die angeborenen Abwehrmechanismen überwunden wurden	671
	12.2.3	Die Reaktionen der T-Effektorzellen im Darm schützen die Epithelfunktion	672
	12.2.4	Das mucosale Immunsystem muss die Toleranz gegenüber harmlosen körperfremden Antigenen aufrechterhalten	673
	12.2.5	Der normale Darm enthält große Mengen an Bakterien, die für die Gesundheit notwendig sind	673
	12.2.6	Das angeborene und das adaptive Immunsystem kontrollieren die Mikroflora und verhindern Entzündungen, ohne dass die Fähigkeit zur Reaktion auf Eindringlinge beeinträchtigt ist	675
	12.2.7	Die Mikroflora im Darm spielt bei der Ausformung der darmspezifischen und systemischen Immunfunktion die Hauptrolle	677
	12.2.8	Vollständige Immunantworten gegen kommensale Bakterien führen zu Erkrankungen des Darms	679
	Aufgaben .		681
	Literatur .		683
Teil	V Das Immu	nsystem bei Gesundheit und Krankheit	
13	Das Versage	n der Immunantwort	695
	13.1 Immuns	schwächekrankheiten	696
	13.1.1	Eine Krankengeschichte mit wiederholten Infektionen legt eine Immunschwäche als Diagnose nahe	697
	13.1.2	Primäre Immunschwächekrankheiten beruhen auf rezessiven Gendefekten	697
	13.1.3	Defekte in der T-Zell-Entwicklung können zu schweren kombinierten Immundefekten führen	698
	13.1.4	SCID kann auch durch Defekte im Purin-Salvage-Weg hervorgerufen werden	701

	13.1.5	Störungen bei der Umlagerung der Antigenrezeptorgene führen zum SCID	701
	13.1.6	Defekte bei der Signalgebung durch Antigenrezeptoren können zu einer schweren Immunschwäche führen	702
	13.1.7	Genetisch bedingte Defekte der Thymusfunktion, welche die Entwicklung der T-Zellen blockieren, führen zu schweren Immunschwächen	703
	13.1.8	Wenn die Entwicklung der B-Zellen gestört ist, kommt es zu einem Antikörpermangel, sodass extrazelluläre Bakterien und einige Viren nicht beseitigt werden können	705
	13.1.9	Immunschwächen können von Defekten bei der Aktivierung und Funktion von B- oder T-Zellen, die zu anormalen Antikörperreaktionen führen, hervorgerufen werden	708
	13.1.10	Die normalen Signalwege der Immunabwehr gegen verschiedene Krankheitserreger lassen sich aufgrund von genetisch bedingten Defekten der Cytokinwege, die für Typ-1/T _H 1- und Typ-3/T _H 17-Reaktionen von zentraler Bedeutung sind, genau bestimmen	711
	13.1.11	Vererbbare Defekte der Cytolysewege der Lymphocyten können bei Virusinfektionen zu einer unkontrollierten Lymphocytenproliferation und Entzündungsreaktionen führen	713
	13.1.12	Das X-gekoppelte lymphoproliferative Syndrom geht mit einer tödlich verlaufenden Infektion durch das Epstein-Barr-Virus und der Entwicklung von Lymphomen einher	715
	13.1.13	Durch vererbbare Defekte bei der Entwicklung der dendritischen Zellen werden ebenfalls Immunschwächen hervorgerufen	717
	13.1.14	Defekte bei Komplementfaktoren und komplementregulatorischen Proteinen schwächen die humorale Immunantwort und verursachen Gewebeschäden	718
	13.1.15	Defekte in Phagocyten ermöglichen ausgedehnte bakterielle Infektionen	720
	13.1.16	Mutationen in den molekularen Entzündungsregulatoren können unkontrollierte Entzündungsreaktionen verursachen, die zu einer "autoinflammatorischen Erkrankung" führen	723
	13.1.17	Durch die Transplantation von hämatopoetischen Stammzellen oder eine Gentherapie lassen sich Gendefekte beheben	724
	13.1.18	Nichtvererbbare, sekundäre Immunschwächen sind die bedeutendsten Prädispositionen für Infektionen mit Todesfolge	726
13.2	Wie die	Immunabwehr umgangen und unterwandert wird	728
	13.2.1	Extrazelluläre pathogene Bakterien haben unterschiedliche Strategien entwickelt, um der Entdeckung durch Mustererkennungsrezeptoren und der Zerstörung durch Antikörper, das Komplementsystem und antimikrobielle	
		Peptide zu entkommen	120

	13.2.2	Intrazelluläre pathogene Bakterien können dem Immunsystem entkommen, indem sie innerhalb der Phagocyten Schutz suchen	732
	13.2.3	Auch parasitische Protozoen können dem Immunsystem entkommen	734
	13.2.4	RNA-Viren verfügen über verschiedene Mechanismen der Antigenvariabilität, durch die sie dem adaptiven Immunsystem immer einen Schritt voraus sind	735
	13.2.5	DNA-Viren verfügen über mehrere Mechanismen, durch die sie Reaktionen der NK- und CTL-Zellen unterlaufen können .	737
	13.2.6	Einige latente Viren persistieren in den lebenden Zellen, indem sie aufhören sich zu replizieren, bis die Immunität abklingt	741
13.3	Das erw	vorbene Immunschwächesyndrom (AIDS)	743
	13.3.1	HIV ist ein Retrovirus, das eine chronische Infektion hervorruft, die langsam zu AIDS voranschreitet	746
	13.3.2	HIV infiziert Zellen des Immunsystems und vermehrt sich darin	746
	13.3.3	Aktivierte CD4-T-Zellen sind der wichtigste Ort für die Replikation von HIV	749
	13.3.4	Es gibt verschiedene Wege, durch die HIV übertragen wird und eine Infektion etabliert	751
	13.3.5	HIV-Varianten mit einem Tropismus für verschiedene Corezeptoren sind für die Ausbreitung und das Fortschreiten der Krankheit von unterschiedlicher Bedeutung	751
	13.3.6	Aufgrund eines genetischen Defekts im Corezeptor CCR5 kommt es <i>in vivo</i> zu einer Resistenz gegenüber einer HIV-Infektion	754
	13.3.7	Eine Immunantwort hält HIV zwar unter Kontrolle, beseitigt es aber nicht	755
	13.3.8	Die Lymphgewebe sind das wichtigste Reservoir für eine HIV-Infektion	757
	13.3.9	Durch die genetische Variabilität kann sich in einem Wirt die Geschwindigkeit verändern, mit der die Krankheit voranschreitet	758
	13.3.10	Die Zerstörung der Immunfunktion als Folge einer HIV-Infektion führt zu einer erhöhten Anfälligkeit gegenüber opportunistischen Infektionen und schließlich zum Tod	760
	13.3.11	Wirkstoffe, welche die HIV-Replikation blockieren, führen zu einer raschen Abnahme des Titers an infektiösen Viren und zu einer Zunahme der Anzahl von CD4-T-Zellen	761
	13.3.12	Bei jedem HIV-Infizierten häuft das Virus im Verlauf der Infektion zahlreiche Mutationen an, sodass wirkstoffresistente Varianten des Virus entstehen können	764
	13.3.13	Ein Impfstoff gegen HIV ist erstrebenswert, wirft aber auch	764

	13.3.14	Prävention und Aufklärung sind eine Möglichkeit, die Ausbreitung von HIV und AIDS einzudämmen	766
	Aufgaben .		768
	Literatur .		770
14	Allergien un	d allergische Erkrankungen	783
	14.1 IgE und	l IgE-abhängige allergische Erkrankungen	786
	14.1.1	Bei einer Sensibilisierung kommt es beim ersten Kontakt mit dem Antigen zu einem Isotypwechsel zu IgE	786
	14.1.2	Viele Arten von Antigenen können eine allergische Sensibilisierung hervorrufen, jedoch wirken häufig Proteasen als sensibilisierende Faktoren	789
	14.1.3	Genetische Faktoren tragen zur Entwicklung von IgE-abhängigen allergischen Erkrankungen bei	791
	14.1.4	Umweltfaktoren können mit der genetisch bedingten Anfälligkeit in Wechselwirkung treten und eine allergische Erkrankung hervorrufen	793
	14.1.5	Regulatorische T-Zellen können allergische Reaktionen kontrollieren	795
	14.2 Effekto	rmechanismen bei IgE-abhängigen allergischen Reaktionen	796
	14.2.1	IgE ist größtenteils an Zellen gebunden und bewirkt auf anderen Wegen als die übrigen Antikörperisotypen Effektormechanismen des Immunsystems	797
	14.2.2	Mastzellen sind in Geweben lokalisiert und maßgeblich an allergischen Reaktionen beteiligt	798
	14.2.3	Eosinophile und basophile Zellen verursachen bei allergischen Reaktionen Entzündungen und Gewebeschäden	801
	14.2.4	IgE-abhängige allergische Reaktionen setzen schnell ein, können aber zu chronischen Reaktionen führen	803
	14.2.5	Allergene, die in den Blutkreislauf gelangen, können eine Anaphylaxie hervorrufen	805
	14.2.6	Das Einatmen von Allergenen führt zu Rhinitis und Asthma	807
	14.2.7	Allergien gegen bestimmte Lebensmittel rufen systemische Reaktionen hervor, aber auch Symptome, die sich auf den Darm beschränken	809
	14.2.8	IgE-abhängige allergische Krankheiten lassen sich durch Hemmung der Effektorwege behandeln, die die Symptome hervorrufen, oder durch Desensibilisierungsmethoden, die darauf abzielen, die biologische Toleranz gegenüber dem Allergen wiederherzustellen	811
	14.3 Nicht-Ig	gE-abhängige allergische Erkrankungen	814
	14.3.1	Bei anfälligen Personen kann die Bindung eines Wirkstoffs an die Oberfläche zirkulierender Blutzellen nicht-IgE-abhängige	
		wirkstoffinduzierte Hypersensitivitätsreaktionen hervorrufen	815

	14.3.2	Die Aufnahme großer Mengen von unzureichend metabolisierten Antigenen kann aufgrund der Bildung von Immunkomplexen zu systemischen Krankheiten führen	815
	14.3.3	Hypersensitivitätsreaktionen werden von T _H 1-Zellen und cytotoxischen CD8-T-Zellen vermittelt	817
	14.3.4	Zöliakie besitzt Eigenschaften von allergischen Reaktionen und Autoimmunität	821
	Aufgaben .		825
	Literatur .		827
15	Autoimmun	ität und Transplantation	835
	15.1 Das Ent	tstehen und der Zusammenbruch der Selbst-Toleranz	836
	15.1.1	Eine grundlegende Funktion des Immunsystems besteht darin, körpereigen und körperfremd zu unterscheiden	836
	15.1.2	Vielfache Toleranzmechanismen verhindern normalerweise eine Autoimmunität	838
	15.1.3	Die zentrale Deletion oder Inaktivierung von neu gebildeten Lymphocyten ist der erste Kontrollpunkt der Selbst-Toleranz	840
	15.1.4	Lymphocyten, die körpereigene Antigene mit relativ geringer Affinität binden, ignorieren diese normalerweise, können aber unter bestimmten Bedingungen aktiviert werden	840
	15.1.5	Antigene in immunologisch privilegierten Regionen induzieren zwar keine Immunreaktion, können jedoch zum Ziel eines Immunangriffs werden	843
	15.1.6	Autoreaktive T-Zellen, die bestimmte Cytokine exprimieren, können nichtpathogen sein oder pathogene Lymphocyten unterdrücken	844
	15.1.7	Autoimmunreaktionen können in verschiedenen Stadien durch regulatorische T-Zellen unter Kontrolle gebracht werden	845
	15.2 Autoim	nmunerkrankungen und pathogene Mechanismen	847
	15.2.1	Spezifische adaptive Immunreaktionen gegen körpereigene Antigene können Autoimmunerkrankungen verursachen	847
	15.2.2	Autoimmunerkrankungen lassen sich in organspezifische und systemische Erkrankungen einteilen	848
	15.2.3	Bei einer Autoimmunerkrankung werden im Allgemeinen mehrere Teilbereiche des Immunsystems aktiviert	849
	15.2.4	Eine chronische Autoimmunerkrankung entwickelt sich durch eine positive Rückkopplung aus der Entzündung, da das körpereigene Antigen nicht vollständig beseitigt wird und sich die Autoimmunreaktion ausweitet	853
	15.2.5	Sowohl Antikörper als auch T-Effektorzellen können bei Autoimmunerkrankungen das Gewebe schädigen	855
	15.2.6	Autoantikörper gegen Blutzellen fördern deren Zerstörung	858

	15.2.7	Die Bindung von geringen, nichtlytischen Mengen des Komplements an Gewebezellen führt zu starken Entzündungsreaktionen	859
	15.2.8	Autoantikörper gegen Rezeptoren verursachen Krankheiten, indem sie die Rezeptoren stimulieren oder blockieren	859
	15.2.9	Autoantikörper gegen extrazelluläre Antigene verursachen entzündliche Schädigungen	860
	15.2.10	T-Zellen mit einer Spezifität für körpereigene Antigene können unmittelbar Gewebeschädigungen hervorrufen und bewirken die Aufrechterhaltung von Autoantikörperreaktionen	865
15.3		etischen und umgebungsbedingten Ursachen der munität	870
	15.3.1	Autoimmunerkrankungen haben eine stark genetisch bedingte Komponente	870
	15.3.2	Auf der Genomik basierende Herangehensweisen ermöglichen neue Einsichten in die immungenetischen Grundlagen der Autoimmunität	871
	15.3.3	Viele Gene, die eine Prädisposition für Autoimmunität hervorrufen, gehören zu bestimmten Gengruppen, die einen oder mehrere Toleranzmechanismen beeinflussen	873
	15.3.4	Monogene Defekte der Immuntoleranz	875
	15.3.5	MHC-Gene sind bei der Kontrolle der Anfälligkeit für Autoimmunerkrankungen von großer Bedeutung	878
	15.3.6	Genetische Varianten, die die angeborenen Immunantworten beeinträchtigen, können zu einer Prädisposition für eine T-Zell-vermittelte chronische Entzündungskrankheit führen	880
	15.3.7	Äußere Faktoren können Autoimmunität auslösen	882
	15.3.8	Eine Infektion kann zu einer Autoimmunerkrankung führen, indem sie Bedingungen schafft, welche die Lymphocytenaktivierung stimulieren	883
	15.3.9	Kreuzreaktivität zwischen körperfremden Molekülen auf Pathogenen und körpereigenen Molekülen können zu Immunreaktionen gegen körpereigene Antigene und zu einer Autoimmunerkrankung führen	884
	15.3.10	Wirkstoffe und Toxine können Autoimmunsyndrome hervorrufen	886
	15.3.11	Beim Auslösen von Autoimmunität können zufällige Ereignisse ebenfalls von Bedeutung sein	888
15.4	Reaktio	nen auf Alloantigene und Transplantatabstoßung	887
	15.4.1	Die Transplantatabstoßung ist eine immunologische Reaktion, die primär von T-Zellen vermittelt wird	887
	15.4.2	Die Transplantatabstoßung ist vor allem auf die starke Immunantwort gegen Nicht-Selbst-MHC-Moleküle zurückzuführen	889

	15.4.3	auf Peptiden von anderen Alloantigenen, die an die MHC-Moleküle des Transplantats gebunden sind	889
	15.4.4	Alloantigene auf einem transplantiertem Spenderorgan werden den T-Lymphocyten des Empfängers auf zwei Arten präsentiert	891
	15.4.5	Antikörper, die mit Endothelzellen reagieren, verursachen hyperakute Abstoßungsreaktionen	893
	15.4.6	Ein spät einsetzendes Versagen transplantierter Organe ist die Folge einer chronischen Schädigung des Organs	894
	15.4.7	Viele verschiedene Organe werden heute routinemäßig transplantiert	895
	15.4.8	Die umgekehrte Abstoßungsreaktion nennt man Graft-versus-Host-Krankheit	895
	15.4.9	An der alloreaktiven Immunantwort sind regulatorische T-Zellen beteiligt	898
	15.4.10	Der Fetus ist ein allogenes Transplantat, welches das Immunsystem immer wieder toleriert	898
	Aufgaben		901
			903
16	Die gezielte	Beeinflussung der Immunantwort	913
	16.1 Therapi	e unerwünschter Immunreaktionen	914
	16.1.1	Corticosteroide sind hochwirksame entzündungshemmende Mittel, welche die Transkription vieler Gene verändern	915
	16.1.2	Cytotoxische Wirkstoffe führen zu einer Immunsuppression, indem sie Zellen während ihrer Teilung abtöten, und haben daher schwere Nebenwirkungen	916
	16.1.3	Ciclosporin, Tacrolimus, Rapamycin und JAK-Inhibitoren sind wirksame Immunsuppressiva, die verschiedene Signalwege der T-Zellen stören	917
	16.1.4	Mit Antikörpern gegen Zelloberflächenantigene kann man bestimmte Subpopulationen von Lymphocyten beseitigen oder ihre Funktion hemmen	920
	16.1.5	Man kann Antikörper so konstruieren, dass ihre Immunogenität für den Menschen herabgesetzt wird	921
	16.1.6	Monoklonale Antikörper lassen sich möglicherweise einsetzen, um Transplantatabstoßungen zu verhindern	922
	16.1.7	Die Eliminierung von autoreaktiven Lymphocyten kann zur Behandlung von Autoimmunerkrankungen beitragen	925
	16.1.8	Biologika, die TNF-α, IL-1 oder IL-6 blockieren, eignen sich möglicherweise zur Linderung von Autoimmunerkrankungen	925
	16.1.9	Biologika können die Wanderung der Zellen zu Entzündungsherden blockieren und die Immunantworten	027
		abschwächen	927

	16.1.10	Durch die Blockade der costimulierenden Signalwege für die Aktivierung der Lymphocyten lassen sich möglicherweise Autoimmunerkrankungen behandeln	928
	16.1.11	Einige der häufig angewendeten Wirkstoffe haben immunmodulierende Eigenschaften	929
	16.1.12	Mit kontrollierten Antigengaben kann man die Art der antigenspezifischen Immunantwort beeinflussen	929
16.2	Der Eins	atz der Immunreaktion zur Tumorbekämpfung	931
	16.2.1	Die Entwicklung von transplantierbaren Tumoren bei Mäusen führte zur Entdeckung, dass Mäuse eine schützende Immunantwort gegen Tumoren entwickeln können	932
	16.2.2	Tumoren werden während ihrer Entwicklung durch das Immunsystem "redigiert" und können so auf vielfältige Weise der Abstoßung entgehen	932
	16.2.3	T-Zellen können Tumorabstoßungsantigene erkennen, die für Immuntherapien die Grundlage bilden	937
	16.2.4	Mit T-Zellen, die chimäre Antigenrezeptoren exprimieren, lassen sich einige Leukämieformen wirksam behandeln	940
	16.2.5	Durch monoklonale Antikörper gegen Tumorantigene – allein oder an Toxine gekoppelt – lässt sich das Tumorwachstum beeinflussen	941
	16.2.6	Die Verstärkung der Immunantwort gegen Tumoren durch eine Impfung ist ein vielversprechender Ansatz in der Krebstherapie	944
	16.2.7	Eine Checkpoint-Blockade kann Immunreaktionen gegen bereits bestehende Tumoren verstärken	945
16.3	Die Bek	ämpfung von Infektionskrankheiten durch Schutzimpfungen	947
	16.3.1	Impfstoffe können auf attenuierten Krankheitserregern oder auf Material aus abgetöteten Organismen basieren	948
	16.3.2	Die wirksamsten Impfstoffe führen zur Bildung von Antikörpern, die Schädigungen durch Toxine verhindern oder das Pathogen neutralisieren und die Infektion beenden	949
	16.3.3	Ein wirksamer Impfstoff muss einen lang anhaltenden Immunschutz hervorrufen, außerdem muss er sicher und preisgünstig sein	950
	16.3.4	Virale attenuierte Lebendimpfstoffe sind wirksamer als Impfstoffe aus "abgetöteten" Viren und können mithilfe der Gentechnik noch sicherer gemacht werden	951
	16.3.5	Attenuierte Lebendimpfstoffe lassen sich durch Selektion nichtpathogener Bakterien oder bakterieller Mangelmutanten oder durch Erzeugung genetisch abgeschwächter Parasiten (GAPs) gewinnen	953
	16.3.6	Die Art der Verabreichung einer Impfung ist für ihren Erfolg	
		wichtig	953

	16.3.7	wirksamer Impfstoff auch sicher ist	955
	16.3.8	Erkenntnisse über das Zusammenwirken von T- und B-Zellen bei der Immunantwort führten zur Entwicklung von Konjugatimpfstoffen	956
	16.3.9	Auf Peptiden basierende Impfstoffe können einen Immunschutz herbeiführen, sie erfordern jedoch Adjuvanzien und müssen auf die geeigneten Zellen und Zellkompartimente ausgerichtet sein, um wirksam sein zu können	959
	16.3.10	Adjuvanzien sind ein wichtiges Mittel, um die Immunogenität von Impfstoffen zu erhöhen, aber nur wenige sind für die Anwendung beim Menschen zugelassen	960
	16.3.11	Durch Impfstoffe auf DNA-Basis lässt sich ein Immunschutz herbeiführen	961
	16.3.12	Impfungen und Checkpoint-Blockaden eignen sich möglicherweise zur Bekämpfung etablierter chronischer Infektionen	961
	Aufgabon		964
	_		
	Literatur .		903
Teil	VI Anhänge		
17	Anhänge .		979
	17.1 Anhang	I – Die Werkzeuge der Immunologen	980
	17.1.1	Immunisierung	980
	17.1.2	Antikörperreaktionen	983
	17.1.3	Affinitätschromatographie	984
	17.1.4	Radioimmunassay (RIA), enzymgekoppelter Immunadsorptionstest (ELISA) und kompetitiver Bindungstest	
			985
	17.1.5	Hämagglutination und Blutgruppenbestimmung	987
	17.1.6	Die Coombs-Tests und der Nachweis der Rhesus-Inkompatibilität	988
	17.1.7	Monoklonale Antikörper	990
	17.1.8	Phage-Display-Bibliotheken für die Erzeugung von Antikörper-V-Regionen	992
	17.1.9	Erzeugung von monoklonalen Antikörpern des Menschen mithilfe einer Impfung von Personen	993
	17.1.10	Immunfluoreszenzmikroskopie	993
	17.1.11	Immunelektronenmikroskopie	995
	17.1.12	Immunhistochemie	995
	17.1.13	Immun- und Coimmunpräzipitation	995
	17.1.14	Western-Blot (Immunblot)	997

17.1.15	Verwendung von Antikörpern zur Isolierung und Charakterisierung von Multiproteinkomplexen durch Massenspektrometrie
17.1.16	Isolierung von Lymphocyten aus dem peripheren Blut mithilfe der Dichtegradientenzentrifugation
17.1.17	Isolierung von Lymphocyten aus anderen Geweben 1001
17.1.18	Durchflusscytometrie und FACS-Analyse 1002
17.1.19	Isolierung von Lymphocyten mithilfe von antikörperbeschichteten magnetischen Partikeln 1004
17.1.20	Isolierung von homogenen T-Zell-Linien 1004
17.1.21	Limitierende Verdünnungskultur
17.1.22	ELISPOT-Assay
17.1.23	Identifizierung funktioneller Subpopulationen der T-Zellen aufgrund der Cytokinproduktion oder der Expression von Transkriptionsfaktoren
17.1.24	Identifizierung der Spezifität von T-Zell-Rezeptoren mithilfe von Peptid:MHC-Tetrameren
17.1.25	Biosensortests für die Bestimmung der Geschwindigkeit von Assoziation und Dissoziation zwischen Antigenrezeptoren und ihren Liganden
17.1.26	Testmethoden für die Lymphocytenproliferation 1015
17.1.27	Messungen der Apoptose mit dem TUNEL-Test 1015
17.1.28	Tests für cytotoxische T-Zellen
17.1.29	Tests für CD4-T-Zellen
17.1.30	Übertragung der schützenden Immunität 1020
17.1.31	Adoptive Übertragung von Lymphocyten 1021
17.1.32	Transplantation von hämatopoetischen Stammzellen 1022
17.1.33	Verabreichung von Antikörpern in vivo
17.1.34	Transgene Mäuse
17.1.35	Gen-Knockout durch gezielte Unterbrechung 1025
17.1.36	Ausschalten der Genexpression durch RNA-Interferenz (RNAi) 1030
17.2 Anhang	g II – Die CD-Antigene
17.3 Anhang	g III – Cytokine und ihre Rezeptoren
17.4 Anhang	g IV – Chemokine und ihre Rezeptoren
17.5 Biograf	ien
17.6 Glossar	
Stichwortverzeich	nnis